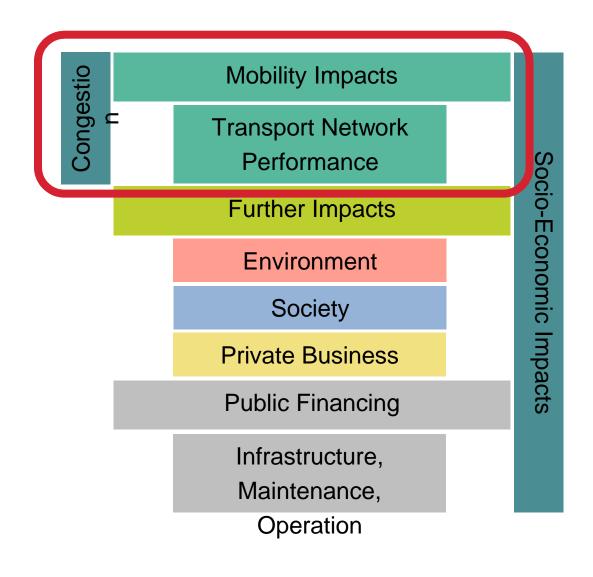


The FLOW Congestion Assessment Methodology

Frederic Rudolph FLOW Webinar 30th January 2017

Agenda



- 1. Definition of congestion
- 2. Operationalisation of Definition: Selection of KPIs
 - a) Network level determination
 - b) Priority setting
- 3. Calculation
 - a) Mode-specific calculation
 - b) Aggregation
- 4. Determination of multimodal congestion threshold

FLOW impact assessment overview

Multimodal definition of congestion

Definition of congestion/transport network performance Operationalisation of definition Selection of KPIs

Calculation & Aggregation of KPIs

Determination of multimodal congestion threshold

Congestion is a state of traffic affecting all modes on a multimodal transport network (e.g. road, cycle facilities, pavements, bus lane) characterised by high densities and overused infrastructure compared to an acceptable state across all modes against previously-agreed targets and thereby leads to (perceived or actual) delay.

Both motorised and non-motorised modes Demand and capacity Adaptability to local circumstances The user perspective

Operationalisation of definition

Definition of congestion/transport network performance

Operationalisation of definition Selection of KPIs

Calculation & Aggregation of KPIs

Determination of multimodal congestion threshold

Technical basis for operationalisation

Definition & KPI selection was based on:

- Literature review
- Recommendation of technical guidelines
- Expert survey

Selection of KPI

Definition of congestion/transport network performance

Operationalisation of definition
Selection of KPIs

Calculation & Aggregation of KPIs

Determination of multimodal congestion threshold

Delay is the additional time experienced by a traffic participant as compared to the minimum travel time

Density is a measure of the number of persons or vehicles using a given space

Travel time related: **Delay**

Demand oriented: **Density**

Service quality related LOS

LOS reflects the quality of service experienced by traffic participants under different levels of use of infrastructure (free flow/free movement → breakdown, congestion)

Operationalisation of definition

Network level determination: Depending on scope of walking & cycling measure

	Assessment Level	Measure Example	Applied indicator
Local	junction:	Reallocation of green times in favour of pedestrians and/or cyclists	Delay, LOS
	segment:	Traffic calming - Introduction of Tempo 30 road sections	Density, LOS
Network	corridor (network segment):	Introduction of new cycle path Public bike sharing scheme	Delay, LOS

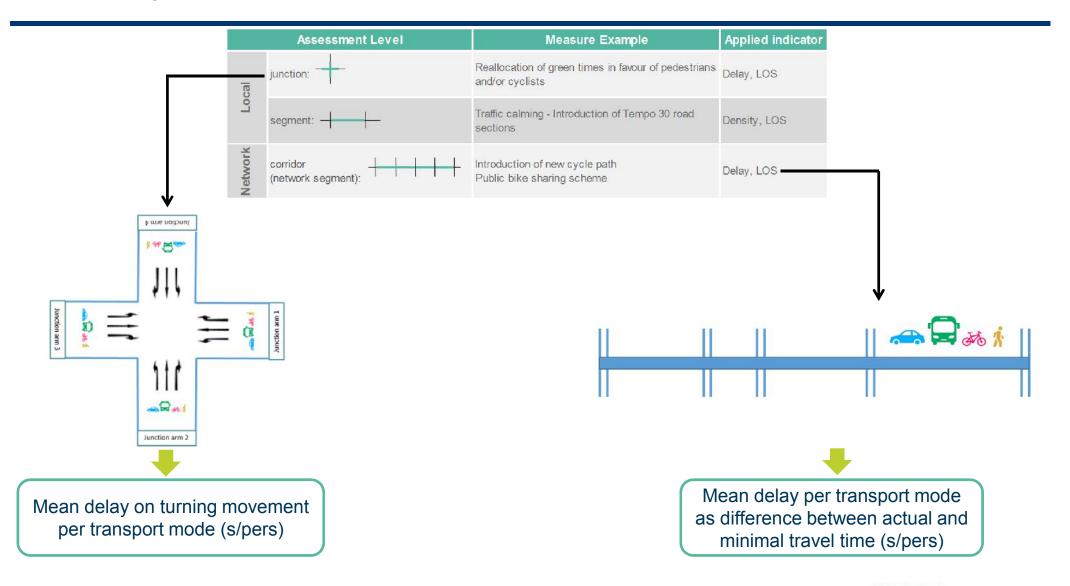
Priority setting: Determined by city based on own objectives (numbers below are exemplary)

Measure	Affected network element	Transport mode	Weighting factor
	separate cycle lane (extension) lanes for motorised traffic (reduced width)	car	1
prioritisation of cycling:		public transport	1
construction of a new cycling lan		cyclist	3
		pedestrian	1

Calculation and aggregation

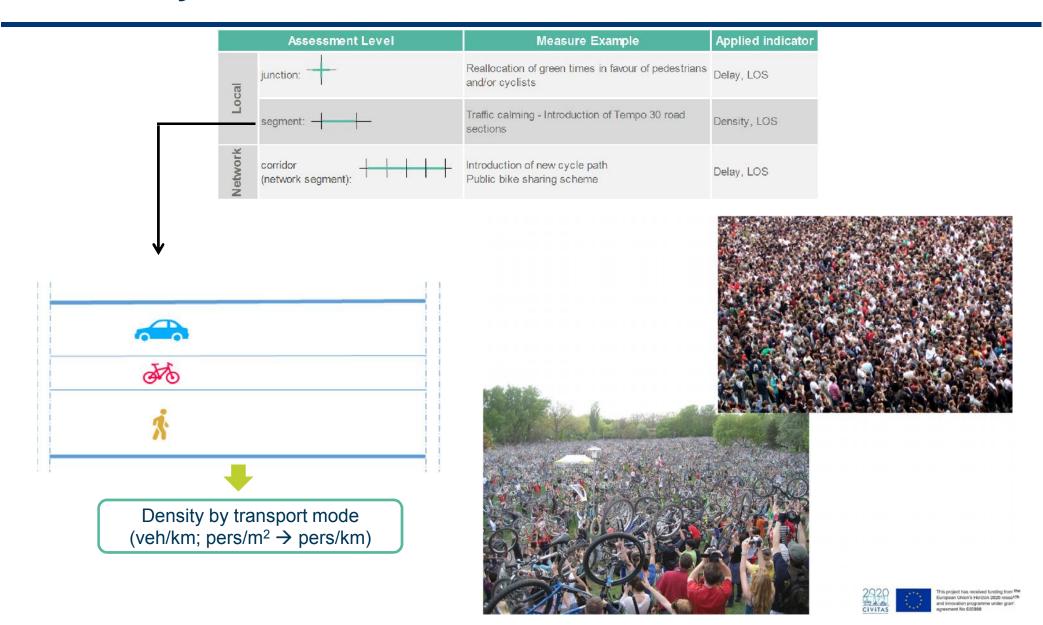
Definition of congestion/transport network performance

Operationalisation of definition Selection of KPIs

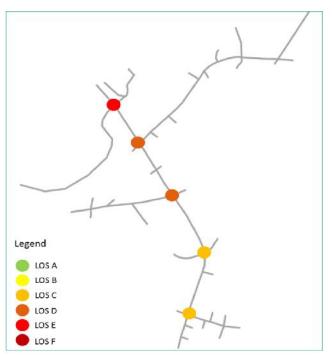

Calculation & Aggregation of KPIs

Determination of multimodal congestion threshold

- Delay
- Density
- Level of Service


Delay

Density


Level of Service (LOS)

Junction Segment (from delay) (from density) - Rast Junction arm 2 Segment: based on mean Junction: based on mean density (e.g. DR, speed delay per transport mode index) per transport mode

Corridor

(from delay)

LOS thresholds

Delay

public transit cycle pedestrian car range of utility car mean cycle pedestrian LOS utility points max.delay max. delay points delay (s/veh) (s/veh) (s/veh) (s/ped) 20 30 30 110 Α 5 101-120 35 15 40 90 81-100 В 40 С 50 25 55 55 70 61-80 D 70 41-60 40 70 70 50 Ε >70 60 85 85 30 21-40 F >60 >85 >85 10 1-20

Density

	car	public transport	cycle	pedestrian		
LOS	car density (veh/km)	PuT travel speed index (-)	cycle disturbance rate DR unidirect. traffic (D/cycle/km)	pedestrian density (pers/m²)	utility points	range of utility points
Α	7	2,00	<1	0,10	110	101-120
В	14	1,50	<3	0,25	90	81-100
С	23	1,25	<5	0,60	70	61-80
D	34	1,00	<10	1,30	50	41-60
E	45	0,75	>10	1,90	30	21-40
F	>45	<0,75	-	>1,90	10	1-20

performance indicator →

Aggregation from KPI to MPI

nodal performance index

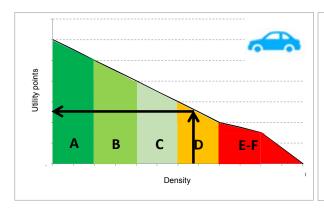
Calculation of mode-specific variables in own units (density: veh/km; pers/m²; delay: s/veh, s/pers; LOS: A-F)

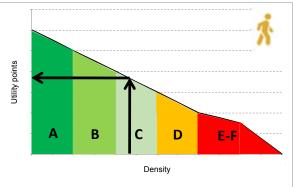
Transformation of mode-specific variables into the same unit (LOS: utility points)

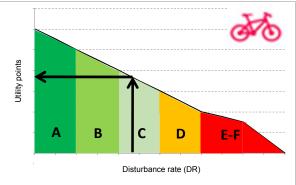
Aggregation of transformed values into one multimodal index (2 weighting factors)

- → traffic volumes (pers/h)
- → priority factor (set by the city)

Multimodal LOS: Aggregation




LOS	utility points		range o	of utility points	
A	110		,	101-120	
В	90			81-100	
С	70			61-80	
D	50			41-60	
E	30	LOS E+F are usually considered as undesired and congested		21-40	
F	10			1-20	



Utility points = 50

Utility points = 70

Utility points = 70

Weighting = 1

Weighting = 1

Weighting = 3 MPI = 60 (D)

Traffic volume (pers/h) = 2000

Traffic volume (pers/h) = 1000

Traffic volume (pers/h) = 300

Achievements

The proposed methodology consists of:

- calculating the performance and capacity of each transport mode independently
- •the KPI 'delay' is evaluated on a person basis rather than a vehicle basis (following the premise of moving people, as opposed to vehicles)
- offering an aggregation procedure to create a multimodal performance index
- •providing the option to apply a weighting in the aggregation process so that the index can be adjusted to reflect the strategic priorities of a city
- •taking into account the user perspective ("minimum"/"acceptable" travel time)

Thank you!

frederic rudolph@wupperinst.org +49-202-2494-230

